首页 > 留学知识库

问题: 求函数极限

1.lim(x→∞)(2x+2cosx)/(x+cos2x)
2.lim(x→π/4)(tanx)^(tan2x)

解答:

1、分子分母同除以x,x→∞时,1/x是无穷小量,cosx、cos2x有界,所以函数极限是(2+0)/(1+0)=2

2、tanx^(tan2x)=e^[tan2x×ln(tanx)]

lim(x→π/4) tan2x×ln(tanx)
=lim(x→π/4) sin2x/cos2x×ln(tanx)
=lim(x→π/4) ln(tanx)/cos2x
=lim(x→π/4) [1/(tanx)×secx×secx]/(-2sin2x)
=lim(x→π/4) 1/[-sinxcosx×2sin2x]=-1

所以,lim(x→π/4) tanx^(tan2x)=1/e