问题: 求sin18°
不用查表或计算器,用三角方法求sin18°.
解答:
解:∵sin36°=cos54°
即sin(2×18°)=cos(3×18°)
2sin18°cos18°=4(cos18°)^3-3cos18°
∵cos18°≠0
∴2sin18°=4(cos18°)^2-3
整理得4(sin18°)^2+2sin18°-1=0
解得sin18°=(根号5-1)/4
解法2.令x = 18°
∴cos3x = sin2x
∴4(cosx)^3 - 3cosx = 2sinxcosx
∵cosx≠ 0
∴4(cosx)^2 - 3 = 2sinx
∴4sinx2 + 2sinx - 1 = 0,
又0 < sinx < 1
∴sinx = (√5 - 1)/4
即sin18° = (√5 - 1)/4.
解法3. 作顶角为36°、腰长为1 的等腰三角形ABC, BD为其底角B的平分线,设AD = x
则AD = BD = BC = x, DC = 1 - x.
由相似三角形得:x2 = 1 - x
∴x = (√ 5 - 1)/2
∴sin18° = x/2 = (√5 - 1)/4.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。