问题: 找出关系并证明
如图,EF∥AB∥CD,则S△ABD、S△BED和S△BDC间的关系,并给出证明。
解答:
做三条高AA',EE',CC'
易知
EF/EE'=AB/AA'=CD/CC'
设比值为k
ABD相似于EFD
BCD相似于BEF
=>
EF/AB=DF/BD
EF/CD=BF/BD
=>
EF/AB+EF/CD=1
=>EE'*k/AA'*k + EE'*k/CC'*k
=EE'/AA'+EE'/CC'
=1
S△ABD:S△BED:S△BDC
=AA':EE':CC'
所以
S△BED/S△BAD + S△BED/S△BCD=1
1/S△BAD + 1/S△BCD =1/S△BED
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。