首页 > 留学知识库

问题: 数列求和

1*n+2*(n-1)+3*(n-2)+……+(n-1)*2+n*1=

解答:

通项是i(n+1-i),i从1到n
i(n+1-i)=i(n+1)-i^2
∑i=n(n+1)/2
∑i^2=n(n+1)(2n+1)/6


1*n+2*(n-1)+3*(n-2)+……+(n-1)*2+n*1
=(n+1)×n(n+1)/2-n(n+1)(2n+1)/6
=n(n+1)(n+2)/6