问题: 若x+y=8,x^2y^2=4,x^2+y^2=?a^2-4a+b^2-10b+29=0,a=?b=
解答:
(1){x+y=8,x^2y^2=4} ==>x+y=8且xy=土2;故x^2+y^2=(x+y)^2-2xy=64干4,即x^2+y^2=68或60。(2)a^2-4a+b^2-10b+29=0 ==>(a^2-4a+4)+(b^2-10b+25)=0 ==>(a-2)^2+(b-5)^2=0,因(a-2)^2>=0,(b-5)^2>=0故(a-2)^2=0,(b-5)^2=0,故a=2,b=5
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。