问题: 已知与曲线C:x^2+y^2-2x-2y+1=0相切的直线l交x轴y轴于A,B两点,O为原点OA=a
已知与曲线C:x^2+y^2-2x-2y+1=0相切的直线l交x轴y轴于A,B两点,O为原点OA=a,OB=b(a>2,b>2).
(1)求证:曲线C与l相切的条件是(a-2)(b-2)=2:
(2)求线段AB中点的轨迹方程;
(3)求三角形AOB面积的最小值。
最少提示一下第一小问的方法,谢谢了。
解答:
曲线C为圆: (x-1)^2+(y-1)^2 =1。圆心C(1,1),半径=1
直线L: x/a +y/b =1,若直线L与圆相切,则:
C(1,1)到直线L距离 =半径 =|1/a +1/b -1|/根号(1/a^2+1/b^2)
==> ab(ab-2a-2b-2)=0 ==> ab-2a-2b+2 =0
==> (a-2)(b-2)=2 ...(1)
线段AB中点P(X,Y), X=a/2,Y=b/2
(1) ==> (X-1)(Y-1)=1/2,(X,Y>1)。此即轨迹方程
三角形AOB面积S=ab/2
ab-2a-2b+2 =0 ==> ab+2=2(a+b)>=4*根号(ab)
ab>=6+4*根号2
==> S>=3+2*根号2
面积的最小值 =3+2*根号2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。