首页 > 留学知识库

问题: 几何

如图所示,已知在三角形ABC中,AD是中线,AE是三角形ABD的中线,BA=BD.求证:AC=2AE.

解答:

证明:如图,过点D作DF∥AC,交AB于F.
AD是中线 ==> BD=CD ==> BD/BC=BF/AB=1/2 ==> BF=AF=1/2AB
AB=BD ==> BF=1/2AB=1/2BD
AE是BD中线 ==> BE=1/2BD=BF
又BA=BD,∠B=∠B ==> △ABE≌△DBF(S.A.S)
==> AE=DF
BD=CD,BF=AF ==> DF=1/2AC=AE ==> AC=2AE.