首页 > 留学知识库

问题: 杂数列求和

Sn=1*n+2*(n-1)+3*(n-2)+...+(n-1)*2+n*1

解答:

Sn=1*n+2(n-1)+3(n-2)+……+(n-2)*2+n*1其通项公式是
an=k(n-k+1)=k[(n+1)-k]=(n+1)k-k^2
所以
Sn=[1*(n+1)-1^2]+[2*(n+1)-2^2]+……+[n(n+1)-n^2]
=(n+1)(1+2+……+n)-(1^2+2^2+……+n^2)
=(n+1)*n(n+1)/2-n(n+1)(2n+1)/6
=n(n+1)/6*[(3(n+1)-(2n+1)]
=n(n+1)(n+2)/6