问题: 若f(sinx)=3-cos2x,则f(cosx)的值是多少?
若f(sinx)=3-cos2x,则f(cosx)的值是多少?
解答:
∵f(sinx)=3-cos2x=3-(1-2sinx*sinx)
∴f(x)=3-(1-2x*x)
=2+2x*x
或者:设sinx=t
cos2x=1-2(sinx)^2=1-2t^2
f(sinx)=3-cos2x
f(t)=3-(1-2t^2)=2t^2+2
把t改成x
f(x)=2x^2+2
f(cosx)=2cos^2 x+2=1+cos2x+2=3+cos2x
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。