问题: 初二数学
若A=〔2+1 〕〔2的2方+1 〕〔2的4方+1 〕〔 2的8方+1〕,则A-2003的末位数字是多少
解答:
A=(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)
=(2^4-1)(2^4+1)(2^8+1)
=(2^8-1)(2^8+1)
=2^16-1
2^n的末位数依次是2、4、8、6的循环,2^16的末位数是6,2^16-1的末位数是5.所以A-2008的末位数是16-8=8.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。