首页 > 留学知识库

问题: 数列

在100以内所有能被3整除但不能被7整除的正整数的和是多少?
答案是1473 是怎么算出来的?

解答:

在100以内所有能被3整除但不能被7整除的正整数的和是多少?

首先,这样的整数和为能被3整除的数之和减去能既能被7又能被3整除的数之和;
所以,能被3整除的数字:3、6、9、12……99为以3为首项,d=3的等差数列之和,S=na1+n(n-1)d=33*3+[33*32/2]*3=1683
其中能被7整除的数之和=21+42+63+84=210
所以,在100以内所有能被3整除但不能被7整除的正整数的和是1683-210=1473