问题: 函数
求证:方程(5x^2)-7x-1=0的根一个在区间(-1,0)上另一个在区间(1,2)上
解答:
设:f(x)=5x^2-7x-1,若f(-1)*f(0)为负数,则显然f(-1)或者f(0)中一定是一个为正一个为负数,那么在区间(-1,0)上的f(x)必然有一个值为O就证明了方程5x^2-7x-1=0的根一个在区间(-1,0),
证明过程:f(-1)*f(0)=-11,则方程5x^2-7x-1=0的根一个在区间(-1,0)上,
同理方程5x^2-7x-1=0的根一个在区间(1,2)上,
f(x)=5x^2-7x-1 的一阶导数如果存在 那么f(x)=5x^2-7x-1就是连续的,
f(x)’=10x-7,存在则f(x)=5x^2-7x-1连续。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。