首页 > 留学知识库

问题: 等比数列{an}的公比为q,前n项和为Sn,求数列{Sn}的通项及前n项和Tn

等比数列{an}的公比为q,前n项和为Sn,求数列{Sn}的通项及前n项和Tn

解答:

等比数列{an}的公比为q,前n项和为Sn,求数列{Sn}的通项及前n项和Tn

设等比数列的首项为a,则:
前n项和为Sn=a(1-q^n)/(1-q)
那么:
S1=a(1-q)/(1-q)
S2=a(1-q^)/(1-q)
……
Sn=a(1-q^n)/(1-q)
所以:
Tn=[a/(1-q)]*[(1-q)+(1-q^)+……+(1-q^n)]
=[a/(1-q)]*[(1+1+……+1)-(q+q^+……+q^n)]
=[a/(1-q)]*[n-q*(1-q^n)/(1-q)]
=[a/(1-q)^]*[n-(n+1)q+q^<n+1>]