首页 > 留学知识库

问题: 高中--三角不等式

在△ABC中,求证
3[sin(A/2)]^2+3[sin(B/2)]^2+3[sin(C/2)]^2+sin(B/2)*sin(C/2)+sin(C/2)*sin(A/2)+sin(A/2)* sin(B/2)≤3

解答:

3[sin(A/2)]^2+3[sin(B/2)]^2+3[sin(C/2)]^2+sin(B/2)*sin(C/2)+sin(C/2)*sin(A/2)+sin(A/2)*sin(B/2)≥3

证明 设s,R,r分别表示△ABC的半周长,外接圆和内切圆半径。
根据三角形己知恒等式:
Σ[sin(A/2)]^2=(2R-r)/(2R)
Σsin(B/2)*sin(C/2)*cos[(B-C)/2]=(s^2-2Rr+r^2)/(8R^2)
据此有
3Σ[sin(A/2)]^2+Σsin(B/2)*sin(C/2)
≥3Σ[sin(A/2)]^2+Σsin(B/2)*sin(C/2)*cos[(B-C)/2]
=(2R-r)/(2R)+(s^2-2Rr+r^2)/(8R^2)≥3
<==> s^2-14Rr+r^2≥0
<==> s^2-16Rr+5r^2+2r(R-2r)≥0
根据Gerretsen不等式:s^2≥16Rr-5r,和欧拉不等式R≥2r.
上式显然成立。证毕.