问题: 一道几何题求解
E,FF分别是正方形ABCD的边BC,CD上的点,且角EAF=45°,试说明EF=BE+DF
解答:
延长CD至G,使DG=BE;连接AG
∵四边形ABCD是正方形
∴∠ADC=90°.AB=AD
∴∠ADG=90°
在△ABE和△ADG中
AB=AD, ∠B=∠ADG, BE=DG
∴△ABE≌△ADG
∴∠BAE=∠DAG,AE=AG
∵∠BAE+∠FAD=90°-∠EAF=90°-45°=45°
∴∠DAG+∠FAD=45°=∠GAF
在△AEF和△AGF中
AE=AG,∠EAF=∠GAF=45°,AF=AF
∴△AEF≌△AGF
∴EF=GF
∵GF=DG+FD=BE+FD
∴EF=BE+FD
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。