问题: 求距离的最小值
椭圆x^2/3+y^2=1上的点到直线x-y+6=0
解答:
设平行于x-y+6=0的椭圆的切线方程是y=x+b
代入得:x^2/3+(x+b)^2=1
x^2+3x^2+6bx+3b^2-3=0
判别式=(6b)^2-4*4(3b^2-3)=0
36b^2-48b^2+48=0
b^2=4
b=(+/-)2
所以,切线方程是y=x(+/-)2,离直线x-y+6=0最近的切线是y=x+2
所以椭圆上的点到直线的最小距离就是二条平行线之间的距离.
即最小距离是:d=|6-2|/根号2=2根号2.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。