首页 > 留学知识库

问题: sos

如图,在△abc中,点D为BC上一点,点P在AD上,过点p做PM//ab交AC于点N,
1)若点D为BC重点,试证明AM/AB=AN/AC
2)若点D为BC上任意一点,试证明AM/AB+AN/AC=Ap/ad

解答:

延长MP,NP交BC于E,F

(1)
PM∥AC==>AM/AB=CF/BC,CF/CD=AP/AD
PN∥AB==>AN/AC=BE/BC,BE/BD=AP/AD
==>CF/CD=BE/BD
D为BC中点==>BD=CD
==>CF=BE
==>AM/AB=AN/AC

(2)
PM∥AC==>AM/AB=CF/BC,CF/CD=AP/AD
PN∥AB==>AN/AC=BE/BC,BE/BD=AP/AD
==>AM/AB+AN/AC=(BE+CF)/BC
AP/AD=CF/CD=BE/BD==>AP/AD=(CF+BE)/(CD+BD)=(BE+CF)/BC
==>AM/AB+AN/AC=AP/AD