问题: 怎么推导出下面的等式?
怎么推导出下面的等式?(数列)
解答:
由两数立方和公式:(n+1)^3=n^3+3n^2+3n+1 得:
(n+1)^3-n^3=3n^2+3n+1
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
(n-1)^3-(n-3)^3=3(n-1)^2+3(n-2)+1
……………………………………
3^3 -2^3=3*2^2 +3*2 +1
2^3 -1^3=3*1^3 +3*1 +1^3
以上等式的两边分别相加得到
(n+1)^3-1^3=3(1^2+2^2+3^2+……+n^2)
+3(1+2+3+……+n)
+(1+1+1+……+1)
∴3(1^2+2^2+3^2+……+n^2)=(n+1)^3-1-3n(n+1)/2-n
=(n+1)(n^2+2n-3n/2-n)
=(n+1)n(n+1/2)
=n(n+1)(2n+1)/2.
∴1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。