首页 > 留学知识库

问题: 三角形问题

在三角形中,∠B=2∠C,P为形内一点,且AP=AB,PB=PC.
求证 ∠PAC=∠BAC/3

解答:

作∠ABC平分线BD交AC于D,连PD
作P关于AC对称点E,连AE,CE,PE
∠ABC=2∠C,BD平分∠ABC==>∠ABD=∠DBC=∠DCB
∠PBC=∠PCB
==>B.C关于DP对称==>DP⊥BC
∠ABD=∠DCB==>△ABC∽△ADB==>AB/AD=AC/AB
AB=AP
==>AP/AD=AC/AP==>△APC∽△ADC==>∠ACP=∠APD
∠ACP=∠ACB-∠PCB
∠APD=∠BPD-∠APB=(90+∠PBC)-∠ABP
=(90+∠PBC)-(∠ABC-∠PBC)=90-2∠ACB+2∠PCB
==>∠ACB-∠PCB=90-2∠ACB+2∠PCB
==>∠ACB-∠PCB=30
==>∠ACP=30

P.E关于AC对称==>AP=AE,∠PAC=∠EAC,PC=EC,∠PCE=2∠ACP=60
==>△PCE为正△
==>PE=PC=PB
AB=AP=AE
==>△ABP≌△AEP==>∠BAP=∠EAP=2∠PAC
==>∠PAC=∠BAC/3