首页 > 留学知识库

问题: 高二数列题求和问题

求Sn=1/(1*4)+1/(4*7)+1/(7*10)+......+1/(3n-2)(3n+1)
要求详细解答,谢谢

解答:

认真分析Sn=1/(1*4)+1/(4*7)+1/(7*10)+......+1/(3n-2)(3n+1)
就会发现:1/(1*4)=1/3 *(1/1 - 1/4)
 1/(4*7)=1/3 *(1/4 - 1/7)
......
1/(3n-2)(3n+1)=1/3 *[1/(3n-2)- 1/(3n+1)]

所以Sn=1/(1*4)+1/(4*7)+1/(7*10)+......+1/(3n-2)(3n+1)
   即Sn=1/3 [1/1 - 1/4 + 1/4 - 1/7 +...... 1/(3n-2)- 1/(3n+1)]
即Sn=1/3 [1/1 - 1/(3n+1)]
即Sn=1/3 [1 - 1/(3n+1)]
即Sn=n/(3n+1)

我想,应该不会错吧