首页 > 留学知识库

问题: 求r

59×1/(1+r)+59×1/(1+r)²+59×1/﹙1+r﹚³+59×1/﹙1+r﹚³×﹙1+r﹚+59×1/﹙1+r﹚³×﹙1+r﹚²=1000
请把全部过程吿我r等于多少?








解答:

解:
为了好看及省事,令1/(1+r)=u
则:59×1/(1+r)+59×1/(1+r)²+59×1/﹙1+r﹚³+59×1/﹙1+r﹚³×﹙1+r﹚+59×1/﹙1+r﹚³×﹙1+r﹚²=1000
为:59×[u+u^+u^3+u^4+u^5]=1000
u,u^,u^3,u^4,u^5是一个首项为u,公比为u,
项数为5的等比数列
其和为S5=u(1-u^5)/(1-u)
∴59×[u+u^+u^3+u^4+u^5]=59×u(1-u^5)/(1-u)=1000