首页 > 留学知识库

问题: 直线与椭圆问题

最好用图片形式给出解答,谢谢!

解答:

(I) 设直线L:y=kx+b,把它代入4x²+5y²=80,得
(4+5k²)x²+10bkx+5b²-80=0,或(4+5k²)y²-8by+4b²-80k²=0,设B(x1,y1),C(x2,y2),M(x',y'),则
x1+x2=-10bk/(4+5k²). ∵ 向量OM=(向量OB+向量OC)/2,
∴ 点M是BC的中点, ∵ A(0,4),B(2,0),向量AF=2(向量FM),
∴ (2,-4)=(2x'-4,2y'), ∴ x'=3,y'=-2.
∵ x'=(x1+x2)/2=-5bk/(4+5k²)=3, y'=kx'+b=-5bk²/(4+5k²)+b=-2, 解得k=6/5,b=-28/5. ∴ 直线L:y=(6x-28)/5.
(II) 设D(x,y), 向量AB•向量AC=0, 向量AD•向量BC=0,
∴ AB⊥AC, AD⊥BC, AB的斜率=(y1-4)/x1,AC的斜率=(y2-4)/x2
∵ (y1-4)(y2-4)/(x1x2)=-1, ∴ x1x2+y1y2-4(y1+y2)+16=0…(*).AD的斜率k1=(y-4)/x, BC的斜率k2=k, ∵ k1•k2=-1, ∴ k=x/(4-y). 把x1x2=(5b²-80)/(4+5k²),y1y2=(4b²-80k²)/(4+5k²),
y1+y2=8b/(4+5k²)代入(*)式,整理得
9b²-32b-16=0,解得b=-4/9或b=4(舍,∵ |b|<4). ∵ b=y-kx=y-x²/(4-y),
∴ y-x²/(4-y)=-4/9, 即x²+(y-16/9)²=(20/9)²(x≠0).……点D的轨迹方程,轨迹是个圆(去掉点A).