首页 > 留学知识库

问题: 中线问题

设la,lb,lc是三角形ABC中线,a,b,c是三边长.
求出(la+lb+lc)/(a+b+c)上界与下界的最佳值。

解答:

设la,lb,lc是三角形ABC中线,a,b,c是三边长.
求出(la+lb+lc)/(a+b+c)上界与下界的最佳值。

答 有如下不等式链
1>(la+lb+lc)/(a+b+c)>3/4
<==> 2s>la+lb+lc>3s/2
所以(la+lb+lc)/(a+b+c)上界的最佳值为1,下界的最佳值为3/4.