问题: 数学
1/1*2+1/2*3+1/3*4+.....+1/2006*2007=?
1/1*2+1/2*3+1/3*4+.....+1/n(n+1)=?
1/2*4+1/4*6+1/6*8+.....+1/2006*2008
解答:
1、
1/1*2+1/2*3+1/3*4+.....+1/2006*2007
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2006-1/2007)
=1-1/2+1/2-1/3+1/3-1/4+.....+1/2006-1/2007
=1-1/2007
=2006/2007
2.
1/1*2+1/2*3+1/3*4+.....+1/n(n+1)=
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+[1/n-1/(n+1)]
=1-1/2+1/2-1/3+1/3-1/4+.....+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
3.
1/2*4+1/4*6+1/6*8+.....+1/2006*2008
=1/4*(1/1*2+1/2*3+1/3*4+.....+1/1003*1004)
=1/4*[(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/1003-1/1004)]
=1/4*(1-1/2+1/2-1/3+1/3-1/4+.....+1/1003-1/1004)
=1/4*[1-1/1004]
=1/4*1003/1004
=1003/4016
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。