首页 > 留学知识库

问题: 数学

1/1*2+1/2*3+1/3*4+.....+1/2006*2007=?
1/1*2+1/2*3+1/3*4+.....+1/n(n+1)=?
1/2*4+1/4*6+1/6*8+.....+1/2006*2008

解答:

1、
1/1*2+1/2*3+1/3*4+.....+1/2006*2007
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2006-1/2007)
=1-1/2+1/2-1/3+1/3-1/4+.....+1/2006-1/2007
=1-1/2007
=2006/2007
2.
1/1*2+1/2*3+1/3*4+.....+1/n(n+1)=
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+[1/n-1/(n+1)]
=1-1/2+1/2-1/3+1/3-1/4+.....+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
3.
1/2*4+1/4*6+1/6*8+.....+1/2006*2008
=1/4*(1/1*2+1/2*3+1/3*4+.....+1/1003*1004)
=1/4*[(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/1003-1/1004)]
=1/4*(1-1/2+1/2-1/3+1/3-1/4+.....+1/1003-1/1004)
=1/4*[1-1/1004]
=1/4*1003/1004
=1003/4016