首页 > 留学知识库

问题: USAMO

If a,b,c>0,such that a+b+c=1.then
1/(a+a^2+a^3+a^4)+1/(b+b^2+b^3+b^4)+1/(c+c^2+c^3+c^4)≥729(a^2+b^2+c^2)/40

解答:

If a,b,c>0,such that a+b+c=1.then
1/(a+a^2+a^3+a^4)+1/(b+b^2+b^3+b^4)+1/(c+c^2+c^3+c^4)≥729(a^2+b^2+c^2)/40

简证 首先齐次化,等价于
40∑(a+b+c)^6/[a(4a^3+6a^2*(b+c)+4a(b+c)^2+(b+c)^3]≥729(a^2+b^2+c^2)
由柯西不等式,只需证
40(∑bc)^2*(∑a)^6/∑ab^2*c^2[(4a^3+6a^2*(b+c)+4a(b+c)^2+(b+c)^3]≥729∑a^2
<==> 40(∑bc)^2*(∑a)^6≥(729abc∑a^2)*∑bc[(4a^3+6a^2*(b+c)+4a(b+c)^2+(b+c)^3]
以下证明也很复杂