首页 > 留学知识库

问题: 抛物线题

若抛物线y^2=2x上两点A(x1.y1),B(x2,y2)关于直线y=x+b对称,且y1*y2=-1,求b.

解答:

若抛物线y^2=2x上两点A(x1.y1),B(x2,y2)关于直线y=x+b对称,且y1*y2=-1,求b.

既然点A、B关于直线y=x+b对称,那么:
1)AB中点在直线上
所以:(y1+y2)/2=(x1+x2)/2+b
===> (y1+y2)=(x1+x2)+2b
===> (y1+y2)=(y1^2+y2^2)/2+2b
===> 2(y1+y2)-(y1^2+y2^2)=4b
===> 2(y1+y2)-[(y1+y2)^2-2y1y2]=4b
===> 2(y1+y2)-[(y1+y2)^2+2]=4b…………………………(1)
2)AB连线的斜率与直线y=x+b斜率k=1的乘积为-1
===> (y2-y1)/(x2-x1)=-1
===> y2-y1=x1-x2
===> y2-y1=(y1^2-y2^2)/2
===> 2(y2-y1)=(y1+y2)(y1-y2)
===> y1+y2=-2………………………………………………(2)
(2)代入(1)中,有:
2*(-2)-[(-2)*2+2]=4b
===> 4b=-4-(4+2)=-10
===> b=-5/2