问题: 求证:1/sin2x+1/tan2x+1/sinx=1/tan(x/2)
解答:
求证:1/sin2x+1/tan2x+1/sinx=1/tan(x/2)
证 记t=tan(x/2) ,由万能置换公式得:
左边=(1+t^2)^2/[4t(1-t^2)]+(1+t^4-6t^2)/[4t(1-t^2)]+(1+t^2)/(2t)
=(4-4t^2)/[4t(1-t^2)]=1/t=右边.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。