首页 > 留学知识库

问题: 数学问题4

已知函数f(x)=(x+1-a)/(a-x)(a∈R且x≠a),若f(0)=0,数列{an}满足a1=-1,,且1/a(n+1)=1/f(an)
求证:-1<a(n+1)+a(n+2)+a(n+3)+…+a(2n)≤-1/2.
(注意,a后面的括号内的部分表示项数。例如a(n+2)表示第n+2项。)

解答:

f(0)=0,(1-a)/a=0,a=1,f(an)=a(n+1),an/(1-an)=a(n+1)
a1=-1,a2=-1/(1+1)=-1/2,a3=-1/3,a4=-1/4,an=-1/n
a(n+1)+a(n+2)+a(n+3)+…+a(2n)=-[1/(n+1)+1/(n+2)+....+1/2n)]
s=-[1/(n+1)+1/(n+2)+....+1/2n)],
-[1/n+1/n+...+1/n]<S<=-[1/2n+1/2n+...+1/n2]
-n/n<s<-n/2n,
-1<s<=-1/2