问题: 数列
见附件
解答:
(1)a(n+1)=1/2a(n)^2-a(n)+2=1/2[a(n)^2-4a(n)+4]+a(n)
=1/2[a(n)^2-2]^2+a(n)>=a(n)
a1=1,a2=3/2,a3=13/8
当n=3,a3=13/8=39/24<40/24=5/3=2-1/3
假设当n=k,有a(k)<2-1/k,(k>=3)
a(k)>=a3=13/8>1
a(k+1)=1/2a(k)^2-a(k)+2=1/2[a(k)-1]^2+3/2
a(k)>1,a(k+1)是关于a(k)单调递增函数,所以
a(k+1)<1/2(2-1/k)^2-(2-1/k)+2
=2-1/k+1/(2k^2)
=2-(2k-1)/(2k^2)
=2-(2k-1)(k+1)/[2k^2(k+1)]
=2-(2k^2+k-1)/[2k^2(k+1)]
<2-2k^2/[2k^2(k+1)]
=2-1/(k+1)
所以当n>=3,a(n)<2-1/n
(2)
1/a1=1,1/a2=2/3,1/a3=8/13
1/a1+1/a2+1/a3=89/39
当n>=3,
a(n+1)>=a(n)>=a3=13/8,1/a(n)>0
∑a(n)>=1/a1+1/a2+1/a3=89/39
a(n+1)<2-1/(n+1)<2
40/39a(n+1)<40/39*2=80/39<∑a(n)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。