首页 > 留学知识库

问题: 几何证明题

设P是ΔABC内任意一点,AP,BP,CP的延长线分别BC,CA,AB于点D,E,F,令R为ΔABC的外接圆半径。
求证 2R*S(DEF)=AD*BE*CF.

解答:

证明 根据三角形面积公式得
S(AEF)=S(ABC)*AE*AF/AB*AC,
S(BDF)=S(ABC)*BD*BF/BC*AB;
S(CDE)=S(ABC)*CD*CE/CA*BC.
故 S(DEF)=S(ABC)-S(AEF)-S(BDF)-S(CDE)
=S(ABC)*[BC*CA*AB-BC*AE*AF-CA*BD*BF-AB*CD*CE]/BC*CA*AB
∵BD+CD=BC, CE+AE=CA, AF+BF=AB,
S(ABC)/BC*CA*AB=1/(4R),
∴ S(DEF)=[ AE*CD*BF+AF*BD*CE]/(4R)
再由塞瓦定理得
AE*CD*BF=AF*BD*CE,
故得:2R*S(DEF)=AD*BE*CF.