问题: 高一题求助
已知三角形ABC的外接圆半径R ,且满足2R(Sin平方A-sin平方C)=(√2a-b)sinB 求三角形ABC面积的最大值
解答:
a=2RsinA, c=2RsinC
2R(Sin平方A-sin平方C)=(√2a-b)sinB ==> a*sinA - c*sinC = (√2a-b)sinB
==> a^2 - c^2 = √2ab - b^2 ==> cosC = (a^2 + b^2 - c^2)/(2ab) = √2/2
C = 45
S = ab*(sinC)/2 = √2/4*ab = √2*R^2*sinA*sinB = √2*R^2*sinA*sin(135-A)
= √2*R^2*[-cos135 + cos(2A-135)]/2
<= √2*R^2*[√2/2 + 1]/2 = (√2+1)*R^2/2
三角形ABC面积的最大值 = (√2+1)*R^2/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。