问题: 则φ
f(x)=cos(√3x+φ)(0<φ<π),若 f(x)+f'(x)为奇函数,则φ
解答:
f(x)=cos(√3x+φ)(0<φ<π)
f'(x)=-√3sin(√3x+φ)(0<φ<π)
f(x)+f'(x)=cos(√3x+φ))-√3sin(√3x+φ)
=2[(1/2)cos(√3x+φ))-(√3/2)sin(√3x+φ)]
=2[(cosπ/3)cos(√3x+φ))-(sinπ/3)sin(√3x+φ)]
=2cos(√3x+φ+π/3)
=2sin[π/2-(√3x+φ+π/3)]
=2sin[π/2-√3x-φ-π/3]
=2sin[-√3x-φ+π/6]
=-2sin[√3x+φ-π/6]为奇函数→
φ-π/6=0+kπ(k∈Z),
0<φ<π→φ=π/6
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。