问题: 取值范围
解答:
g(x)=ax³+bx²+cx+d--->f(x)=g'(x)=3ax²+2bx+c
∵a+b+c=0--->c=-(a+b)
∴f(0)f(1)=c(3a+2b+c)=-(a+b)(2a+b)>0
a>0--->(1+b/a)(2+b/a)<0--->-2<b/a<-1
(x1-x2)²=(x1+x2)²-4x1x2
=[(-2b)/(3a)]²-4c/(3a)
= 4(b²-3ac)/(9a²)
= 4(b²+3a(a+b)/(9a²)
= (4/9)(b²+3ab+3a²)/a²
= (4/9)[(b/a)²+3(b/a)+3]
= (4/9)[(b/a+3/2)²+(3/4)]
∵-2<b/a<-1--->-1/2<b/a+3/2<1/2
--->0≤(b/a+3/2)²<1/4
--->1/3≤(x1-x2)²<4/9
--->√3/3≤|x1-x2|<2/3................选A
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。