首页 > 留学知识库

问题: 取值范围

解答:

g(x)=ax³+bx²+cx+d--->f(x)=g'(x)=3ax²+2bx+c
∵a+b+c=0--->c=-(a+b)
∴f(0)f(1)=c(3a+2b+c)=-(a+b)(2a+b)>0
a>0--->(1+b/a)(2+b/a)<0--->-2<b/a<-1

(x1-x2)²=(x1+x2)²-4x1x2
    =[(-2b)/(3a)]²-4c/(3a)
    = 4(b²-3ac)/(9a²)
    = 4(b²+3a(a+b)/(9a²)
    = (4/9)(b²+3ab+3a²)/a²
    = (4/9)[(b/a)²+3(b/a)+3]
    = (4/9)[(b/a+3/2)²+(3/4)]
∵-2<b/a<-1--->-1/2<b/a+3/2<1/2
--->0≤(b/a+3/2)²<1/4
--->1/3≤(x1-x2)²<4/9
--->√3/3≤|x1-x2|<2/3................选A