首页 > 留学知识库

问题: 计算

1*2*3+2*3*4+……+n(n+1)(n+2)=?
最好有解题过程

解答:

1^3+2^3+……+n^3=[n(n+1)/2]^2=n^2(n+1)^2/4

1^2+2^2+……+n^2=n(n+1)(2n+1)/6

1+2+……+n=n(n+1)/2

所以1*2*3+2*3*4+……+n(n+1)(n+2)
=n^2(n+1)^2/4+3*n(n+1)(2n+1)/6+2*n(n+1)/2
=n^2(n+1)^2/4+n(n+1)(2n+1)/2+n(n+1)
=[n(n+1)/4][n(n+1)+2(2n+1)+4]
=[n(n+1)/4](n^2+n+4n+2+4)
=[n(n+1)/4](n^2+5n+6)
=n(n+1)(n+2)(n+3)/4