问题: 计算
1*2*3+2*3*4+……+n(n+1)(n+2)=?
最好有解题过程
解答:
1^3+2^3+……+n^3=[n(n+1)/2]^2=n^2(n+1)^2/4
1^2+2^2+……+n^2=n(n+1)(2n+1)/6
1+2+……+n=n(n+1)/2
所以1*2*3+2*3*4+……+n(n+1)(n+2)
=n^2(n+1)^2/4+3*n(n+1)(2n+1)/6+2*n(n+1)/2
=n^2(n+1)^2/4+n(n+1)(2n+1)/2+n(n+1)
=[n(n+1)/4][n(n+1)+2(2n+1)+4]
=[n(n+1)/4](n^2+n+4n+2+4)
=[n(n+1)/4](n^2+5n+6)
=n(n+1)(n+2)(n+3)/4
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。