问题: 数列{an}中,a1=1,当n>=2时,前n项和Sn满足Sn^2=an(Sn-1/2).求Sn
解答:
Sn^2=an(Sn-1/2)=[Sn -S(n-1)](Sn -1/2)
==> S(n-1) =Sn +2*Sn*S(n-1) ==> 1/Sn =1/S(n-1) +2
{Sn}为等差数列,公差=2,首项1/S1 =1/a1 =1 ==> 1/Sn =2n-1
==> Sn =1/(2n-1)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。