首页 > 留学知识库

问题: 用数学归纳法证明|Sinnθ|<=n|Sinθ|

用数学归纳法证明|Sinnθ|<=n|Sinθ|
不知道能不能用导数做。

解答:

(1)初始验证:n=1时结论显然成立;

(2)通式假定:设n=k时结论也成立,即
|sinkθ|≤k|sinθ|;

(3)渐进递推:
|sin(k+1)θ|=|sinkθcosθ+coskθsinθ|
≤|sinkθ||cosθ|+|coskθ||sinθ|
≤|sinkθ|+|sinθ|
≤k|sinθ|+|sinθ|
=(k+1)|sinθ|,
说明 n=k+1时,结论也成立