首页 > 留学知识库

问题: 设b-a=r-b=兀/3,求tanatanb+tanbtanr+tanrtana

解答:

b-a=r-b=兀/3 ==> r-a=2兀/3
tan(b-a)=(tanb-tana)/(1+tana*tanb)
==> tana*tanb =(tanb-tana)/tan(b-a) -1
tanb*tanr =(tanr-tanb)/tan(r-b) -1
tanr*tana =(tanr-tana)/tan(r-a) -1
==> tanatanb+tanbtanr+tanrtana
= (tanb-tana)/tan兀/3 -1 +(tanr-tanb)/tan兀/3 -1 +
tanr-tana)/tan2兀/3 -1
= -3