问题: 急···求极限的三道题目~在线等。要过程,谢谢
lim(x→∞)(1-kx)的x分之一次幂,k∈z;
lim(x→∞)(x+1/x-1)的x次幂;
lim(x→∞){1/a(a+d) + 1/(a+d)(a+2d) ``` +1/[a+(n-1)d][a+nd]},a,d为不等于零的常数
解答:
lim(x→∞)(1-kx)的x分之一次幂,k∈z;
lim(x→∞)(1-kx)^(1/x)
=lim(x→∞){[(1-kx)^(1/-kx)]^(-kx)}^(1/x)
=lim(x→∞)e^[(-kx)*(1/x)]
=lim(x→∞)e^(-k)
=1/e^k
lim(x→∞)(x+1/x-1)的x次幂;
=lim(x→∞)[(x-1+2)/(x-1)]^x
=lim(x→∞)[1+2/(x-1)]^x
=lim(x→∞)【{[1+2/(x-1)]^(x-1/2)}^2/(x-1)】^x
=lim(x→∞)e^[2x/(x-1)]
=e^2
lim(n→∞){1/a(a+d) + 1/(a+d)(a+2d) ``` +1/[a+(n-1)d][a+nd]},a,d为不等于零的常数
=lim(n→∞){(1/d)[(1/a)-(1/a+d)]+(1/d)[(1/a+d)-(1/a+2d)]+……+[(1/d)(1/[a+(n-1)d]-1/[a+nd]}
=lim(n→∞)(1/d)*[(1/a)-(1/a+d)+(1/a+d)-(1/a+2d)+……+1/[a+(n-1)d]-1/(a+nd)]
=lim(n→∞)(1/d)*[(1/a)-1/(a+nd)]
=lim(n→∞)(1/d)*[nd/a*(a+nd)]
=lim(n→∞)n/[a*(a+nd)]
=lim(n→∞)1/{a*[(a/n)+d]}
=1/[a*(0+d)]
=1/(ad)
前面两道题目,利用的是重要极限:lim(x→∞)(1+x)^(1/x)=e
它们都属于这个重要极限的变形!
第三题的关键是拆项。考虑到分式的分母中两项之差均为d,将每一个分式拆成两个分式的差,然后就是消去同样的项。
看来楼上的解答,我只能是无语,还有点想笑。。。(ˇˍˇ)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。