首页 > 留学知识库

问题: 求函数y=cos2x-2倍根号3sinxcosx的最小正周期

解答:

y=cos2x-2√3sinxcosx
=cos2x-√3(2sinxcosx)
=cos2x-√3sin2x
=2(1/2*cos2x-√3/2*sin2x)
=cos2xcosπ/3-sin2xsinπ/3
=cos(2x+π/3)
所以T=2π/2=π.