问题: 高中数学
设f(x)=cos(x派/2),求f(25)+f(26)+f(27)+...+f(42)的值(注:其中 派代表圆周率 )
解答:
f(x) + f(x+1) + f(x+2)+f(x+3)
= [f(x) + f(x+2)] + [f(x+1) + f(x+3)]
= [cosxπ/2 + cos(x+2)π/2] + [cos(x+1)π/2 + cos(x+3)π/2]
= cosxπ/2 + cos(xπ/2 + π) + cos(x+1)π/2 + cos[(x+1)π/2 + π]
= cosxπ/2 - cosxπ/2 + cos(x+1)π/2 - cos(x+1)π/2
= 0
即任意连续4项的和为0
所以
f(25)+f(26)+f(27)+•••+f(42)
= f(41) + f(42)
= cos41π/2 + cos42π/2
= cosπ/2 + cosπ
= 0 - 1
= -1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。