首页 > 留学知识库

问题: 高中数学

设f(x)=cos(x派/2),求f(25)+f(26)+f(27)+...+f(42)的值(注:其中 派代表圆周率 )

解答:

f(x) + f(x+1) + f(x+2)+f(x+3)
= [f(x) + f(x+2)] + [f(x+1) + f(x+3)]
= [cosxπ/2 + cos(x+2)π/2] + [cos(x+1)π/2 + cos(x+3)π/2]
= cosxπ/2 + cos(xπ/2 + π) + cos(x+1)π/2 + cos[(x+1)π/2 + π]
= cosxπ/2 - cosxπ/2 + cos(x+1)π/2 - cos(x+1)π/2
= 0

即任意连续4项的和为0

所以
f(25)+f(26)+f(27)+•••+f(42)
= f(41) + f(42)
= cos41π/2 + cos42π/2
= cosπ/2 + cosπ
= 0 - 1
= -1