问题: 时钟在3点到4点之间的哪个时刻,时针和分针⑴重合;⑵成平角;⑶成直角
很急,很感谢
解答:
解:设将表盘分为60份,每份的圆心角为6度,对应1分钟,时针指向为三时与四时之间得位置,分针每走一格,时针就走三时与四时之间的6度(5分钟)的60分之一,设12时的位置为0度,则三时所指位置为90度,15分钟,所以设分针走到x分钟时,两针重合,择有
x=15+(x/60)*5解之得x=16.36,也就是此时时刻为3点16分21.6秒
当两针成平角时,
则有x=30+(x/60)*5+15,解之得x=49.09,也就是3点49分5.4秒
当两针成直角时,
则有x=15+(x/60)*5+15,解之得x=32.73,也就是此时时刻为3点32分43.8秒
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。