问题: 规律题
阅读下列材料,解答问题
1+2=[2*(1+2)]/2 1/1*2=1/1-1/2
1+2+3=(3*(1+3)]/2=6 1/2*3=1/2-1/3
1+2+3+4=[4*(1+4)]/2=10 1/3*4=1/3-1/4
.... ........
1)猜想1+2+3...+N=[ ],1/1*2+1/2*3+1/3*4...+1/(N-1)*N=[ ]
2)利用上述猜测计算
1+[1/1+2]+[1/1+2+3]+[1/1+2+3+4]+...+[1/1+2+3+...+2008]
解答:
1)猜想
1+2+3+……+n=n(n+1)/2
1/(1*2)+1/(2*3)+1/(3*4)+……+1/[(n-1)n]=1-1/n=(n-1)/n
2)因此1/(1+2)+1/(1+2+3)+1/(1_2+3+4)+……+1/(1+2+3+……+2008)
=1/[(1*2)/2]+1/[(2*3)/2]+1/(3*4)/2]+……+1/[(2007*2008)/2]
=2[1/(1+2)+1/(2*3)+1/(3*4)+……+1/(2007*2008)]
=2[(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2007-1/2008)]
=2(1-1/2008)
=22*2007/2008
=2007/1004.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。