首页 > 留学知识库

问题: 求下列各极限

求下列各极限:
(1)lim (1+1/2+1/4+.....+1/2^n)
n→∞

(2)lim{[(2x-1)^30(3x-1)^20]÷(2x+1)^50}
x→∞

(4)lim (sin3x÷sin4x)
x→0

(5)lim[(1+1/x)x+3]
x→∞

(6)lim(1/xcosx)
x→∞

解答:

lim (1+1/2+1/4+.....+1/2^n) ()里的就是等比数列求和
=lim[1-(1/2)^(n+1)]/(1-1/2)
=2

lim{[(2x-1)^30(3x-1)^20]÷(2x+1)^50}
=lim[(2-1/x)^30(3-1/x)^20]/(2+1/x)^50(上下同除以x^50)
=2^30*3^20/2^50
=(3/2)^20

lim (sin3x÷sin4x)
=lim3x/(4x)(无穷小的变形,lim(x→0)sinx/x=1)
=3/4

lim[(1+1/x)^x+3] (我猜你这题写错了,x是指数or x+3是指数,否则这个极限无穷大) lim(1+1/x)^x=e(这是定理)
=e+3 or e(x为指数时为e+3,x+3指数为e)
如果题目没错=lim(x+1+3)=无穷大


lim(1/xcosx)
=lim(1/x)*lim(cosx)
=0*lim(cosx)(|cosx|<=1)
=0