问题: 一道高二数学题
已知tanα+sinα=a,tanα-sinα=b,求证:(a^2-b^2)^2=16ab
解答:
(a^2-b^2)^2=[(tanα+sinα)^2-(tanα-sinα)^2]^2
=(4tanαsinα)^2
=16(tanα)^2(sinα)^2
=16[(secα)^2-1](sinα)^2
=16[(1/cos^2 a)-1](sinα)^2
=16[(sinα/cosα)^2 - (sinα)^2]
=16[(tanα)^2 - (sinα)^2]
=16(tanα+sinα)(tanα-sinα)
=16ab
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。