首页 > 留学知识库

问题: 高一函数题

已知sin(x-y)cosx-cos(x-y)sinx=3/5,求tan2y的值

解答:

sin(x-y)cosx-cos(x-y)sinx
=sin(x-y-x)=sin(-y)=-siny
所以siny=-3/5
cosy=4/5或者-4/5
tany=3/4或者-3/4
tan2y=2tany/(1-tan^2y)=(3/2)/(1- 9/16)=4/3
或者是-4/3