首页 > 留学知识库

问题: 紧急求解函数

化简3/8-1/2 (cos2x)+1/8(cos4x)

解答:

3/8-1/2 (cos2x)+1/8(cos4x)
=(3/8)-(1/2)*cos2x+(1/8)*[2cos^2(2x)-1]
=(3/8)-(1/2)*cos2x+(1/4)cos^2(2x)-(1/8)
=(1/4)*cos^2(2x)-(1/2)*cos2x+(1/4)
=[(1/2)*cos2x]^2-2*(1/2)*(1/2)*cos2x+(1/2)^2
=[(1/2)*cos2x-(1/2)]^2
={(1/2)*[1-2sin^2(x)]-(1/2)}^2
={(1/2)-(1/2)*[2sin^2(x)]-(1/2)}^2
=[sin^2(x)]^2
=sin^4(x)