如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E。求证:BD=2CE
如图
分别延长BA、CE,两者相交于点F
因为BE⊥CF,所以:∠BEC=∠BEF=90°
BE边公共
已知,∠1=∠2
所以,Rt△BECRt≌△BEF(ASA)
所以,CE=EF
即,CF=2CE
又,∠FCA+∠CDE=90°,∠ABD+∠BDA=90°
所以:∠FCA+∠CDE=∠ABD+∠BDA
而,∠CDE=∠BDA(两者为对顶角)
所以,∠FCA=∠ABD
已知AB=AC
∠CAF=∠BAD=90°
所以,Rt△FCA≌Rt△DBA(ASA)
所以,CF=BD
所以,BD=2CE
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。