首页 > 留学知识库

问题: 一道数学难题

设BC=a,CA=b,AB=c,R,r分别为△ABC的外接圆与内切圆的半径。a是最大边.则△ABC为锐角三角形的充要条件是:R+r≤(b+c)/2。

解答:

设P=b+c-2(R+r) ,
由正弦定理和三角形恒等式:cosA+cosB+cosC=(R+r)/R,得:
P=2R(sinB+sinC-cosA-cosB-cosC)
=2R{2cos(A/2)*cos[(B-C)/2]-2sin(A/2)*cos[(B-C)/2]-[cos(A/2)]^2+[sin(A/2)]^2}
=2R*[cos(A/2)-sin(A/2)]*{2cos[(B-C)/2]-cos(A/2)-sin(A/2)}
记Q=2cos[(B-C)/2]-cos(A/2)-sin(A/2)
Q=cos[(B-C)/2]-cos[(π-B-C)/2]+cos[(B-C)/2]-cos[(B+C)/2]
=2sin[(π-2B)/2]*sin[(π-2C)/2]+2sin(B/2)*sin(C/2)>0.
P=2R*[cos(A/2)-sin(A/2)]*Q
故当cos(A/2)>sin(A/2) <==> A<π/2时,P>0;
故当cos(A/2)=sin(A/2) <==> A=π/2时,P=0;
故当cos(A/2)<sin(A/2) <==> A>π/2时,P<0;