问题: 三角不等式
在锐角三角形ABC中,求证
1/[sin(2B)*sin(2C)]+1/[sin(2C)*sin(2A)]+1/[sin(2A)*sin(2B)]
≥1/(sinA)^2+1/(sinB)^2+1/(sinC)^2
解答:
证明 ∵A,B,C为锐角,∴sin(2A)>0,sin(2B)>0,sin(2C)>0。
而 sin(2B)*sin(2C)=4*sinB*cosB*sinC*cosC
=4(sinB*cosC)*(sinC*cosB)
≤[sinB*cosC+sinC*cosB]^2
=[sin(B+C)]^2=(sinA)^2,
所以有
1/[sin(2B)*sin(2C)]≥1/(sinA)^2 (1)
同理可得:
1/[sin(2C)*sin(2A)]≥1/(sinB)^2 (2)
1/[sin(2A)*sin(2B)]≥1/(sinC)^2 (3)
(1)+(2)+(3)即得所证不等式。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。