问题: 高一数学题
已知a>0,函数f(x)=ax-bx`2.
(1)当b>0时,若对任意x∈R都有f(x)<=1,证明:a<=2√b;
(2)当b>1时,证明:对任意x∈[0,1]都有│f(x)│<=1的充要条件是b-1<=a<=2√b。
解答:
已知a>0,函数f(x)=ax-bx`2.
(1)当b>0时,若对任意x∈R都有f(x)<=1,证明:a<=2√b;
(2)当b>1时,证明:对任意x∈[0,1]都有│f(x)│<=1的充要条件是b-1<=a<=2√b
i)∵a<=2√b==>a^2<=4b==>a^2/4b<=1,f(x)<=1
∴f(x)=ax-bx^2
==>-b(x^2-xa/b)
==>-b(x^2-xa/b+a^2/4b^2)+a^2/4b
==>-b(x-a/2b)^2+a^2/4b<=a^2/4b<=1
∴a<=2√b
ii)必要条件:
)当b>1时,对任意x∈[0,1]都有│f(x)│<=1
∵│f(x)│<=1==>f(x)>=-1
==>f(1)>=-1
==>a-b>=-1
==>a>=b-1
│f(x)│<=1==>f(x)<=1,(b>1)
==>f(1/√b)<=1
==>(a/√b)-1<=1
==>a<=2√b
所以:b-1<=a<=2√b
充分条件:
b>1,a>=b-1,x∈[0,1].
f(x)=ax-bx^2>=(b-1)x-bx^2=b(x-x^2)-x
==>b(x-x^2)-x>=-x>=-1
即:f(x)>=-1
b>1,a<=2√b,x∈[0,1]
f(x)=ax-bx^2<=x2√b-bx^2<=1
∴-1=<f(x)<=1
即:对任意x∈[0,1]都有│f(x)│<=1的充要条件是b-1<=a<=2√b。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。